Addressing the limitations of federated groundwater bore data

(another challenge for the 21st Century)

Dr Peter Dahlhaus Senior Research Fellow

Dr Helen Thompson Director, Centre for eCommerce and Communication

Mr Andrew Macleod Director, Centre for eCommerce and Communication

The 21st Century Context

eResearch challenges

- Ubiquitous high-speed broadband being rolled out.
- **The Petabyte Age**... >50% of the world's data is being collected each year how do we utilise it?.
- **Open data policies**... raw data is more accessible, but how to interpret it?.
- **Mobile technologies**... everyone is spatially enabled and spatially aware we want to know about here and now.
- 3d visualisation technology is more commonplace than
 ever before television, cinema, printers...

The 21st Century Context

eResearch questions:

- How do we provide access to big and complex data in a way that people can use easily... but without biasing the data?
- How do we incorporate qualitative data with quantitative data into models to improve accuracy?
- How can we harness Citizen Science and use crowdsourced data to improve our hydrogeologic science?
- Can we use digital technologies to ensure that we don't keep repeating the same science?
 University of Ballarat

Visualising Victoria's Groundwater

A collaboration of 17 partner organisations

(e)

Centre for eCommerce and Communications

Ressources naturelles Canada

Department of Environment and Primary Industries

ດມາ

Natural Resources

Canada

DEPARTMENT OF STATE DEVELOPMENT BUSINESS AND INNOVATION

Queensland University of Technology

An interoperative spatial information portal that federates groundwater data from disparate sources.

Primarily for research and investigation.

Non-government portal (unique?).

Copyright 2012 University of Ballarat - All rights reserved

Mobile version

- Data on the nearest bores
- ✓ Sink a virtual borehole
- Interrogate the groundwater systems under foot

Bore data from four different databases + springs

Examples include elevations, waterlevels, heads, gradients, aquifer parameters, bore construction measurements, chemistry, isotopes, pumping data and extraction volumes.

Time-series monitoring data is particularly useful to understand the dynamic behaviour of groundwater systems.

143.92157, -38.13547

Scale = 1 : 867K

EPSG:900913

Numeric surfaces (grids) generated from quantitativ

Aquifer	Attribute	Value
Upper Tertiary/Quaternary Basalt (101)	Top Elevation	144.91 mAHD
Upper Tertiary/Quaternary Basalt (101)	Thickness	79.0 m
Upper Tertiary/Quaternary Basalt (101)	Bottom Elevation	65.55 mAHD
Upper-Mid Tertiary Aquitard (108)	Depth to	80.3 m
Upper-Mid Tertiary Aquitard (108)	Top Elevation	65.55 mAHD
Upper-Mid Tertiary Aquitard (108)	Thickness	342.6 m
Upper-Mid Tertiary Aquitard (108)	Bottom Elevation	-277.04 mAHD
Lower-Mid Tertiary Aquitard (110)	Depth to	422.9 m
Lower-Mid Tertiary Aquitard (110)	Top Elevation	-277.04 mAHD
Lower-Mid Tertiary Aquitard (110)	Thickness	7.3 m
Lower-Mid Tertiary Aquitard (110)	Bottom Elevation	-284.30 mAHD
Lower Tertiary Aquifer (111)	Depth to	430.1 m
Lower Tertiary Aquifer (111)	Top Elevation	-284.30 mAHD
Lower Tertiary Aquifer (111)	Thickness	38.2 m

ve uala	Layers
85	Depth to watertable (DSE)
Google Hybrid	Groundwater salinity (DSE)
Google Streets Greyscale	Elevation of basement (DSE)
建设进行的 1月99	Surface elevation (DSE)
学生 生 小	Bores - DPI GSV GEDIS (minerals)
	Bores - DPI FFSR Salinity
A Carlos	Bores - DSE GMS (groundwater)
Mar Parks	Bores - UBSpatial (groundwater)
Stall Barrie	Mineral Springs
	Geology (DPI GSV)
	Advanced aquifer tools (new) Info Legend Search Comment Surface elevation (DSE) Greater than 1000 metres 900 to 1000 metres 900 to 1000 metres 700 to 800 metres 600 to 700 metres 500 to 600 metres 500 to 600 metres 400 to 500 metres 400 to 500 metres
A 1 1 1 1	300 to 400 metres
	200 to 300 metres

DISCLAIMER

FEEDBACK

VVG WEBSITE

(DSE) ater than 1000 metres to 1000 metres to 900 metres to 800 metres to 700 metres to 600 metres to 500 metres to 400 metres to 300 metres e.g. surface elevation +

basalt thickness

Predictions of aquifer top, bottom and thickness

Mines Department Victoria

GROUNDWATER **INVESTIGATION** PROGRAM REPORT 1972

Bores link to original data source where possible

But what about the qualitative data?

Data often overlooked by scientists (hydrogeologists), but it can be critically important.

Examples include observations about landscape features, soil colours, vegetation types, seeps, springs, wetland ecosystems, and anecdotal information from long-term occupiers of the land.

Redoximorphic features in saprolite, Dundas Tableland, Vic

Even ephemera can be valuable

mine, 1/2, Instruct all forence to include a statement in the How " & water whether it is M TELEORAPHIC ADDRESS: DRILLING, MELBOURNE CABLE ADDRESS: DRILLING, MELBOURNE ATH EDITION MANAGING DIRECTOR Goldfields Diamond Drilling Co. Propy Ltd. J. E. ELLIOTT ENGINEERS. MANUFACTURERS. BORING CONTRACTORS AND MACHINERY MERCHANTS BOND AND FREE STORES STURT & DODD'S STS., SOUTH MELBOURNE PHONE 5414 BOND AND FREE STORES ENGINEERING WORKS: STURT & POWER STS., SOUTH MELBOURNE 205 STURT STREET, SOUTH MELBOURNE ELIZABETH STREET P.O. BOX 45 BRANCHES IN ALL STATES Melbourne, 20th October, 1924.

VICTORIA

flush jointed

CONTRACTORS FOR OIL WELL DRILLING WATER BORING DIAMOND DRILLING MANUFACTURERS OF WELL-BORING MACHINERY AND ACCESSORIES, WEIR FEED SERVICE PUMPS LARGE STOCKS WELL CASING ALL SIZES BOND AND FREE STORES

AGENCIES:

ON SIMPSON LTD.

The Secretary for Mines, Department of Mines, MELBOURNE . RE 5" O.D. x 5/16" CASING. In answer to your Mr. Stanley Hunter's

Dear Sir/

So what constitutes groundwater data?

3D visualisation of Victoria's groundwater systems on demand uses pre-modelled surfaces...

Will modelling on-the-fly ever be possible?

Combining technologies with QUT – dynamic 3D visualisations in a browser

The 21st Century Groundwater Research Challenge

How to take advantage of the 21st Century New Digital Age

- Interoperability
- Big data
- Legacy data
- Crowdsourced data

- To dynamically generate conceptual and predictive models?
- To make new discoveries and avoid Zombie Science?

